
THE LINUX FOUNDATION TRAINING PUBLICATION

The GrowTh
of Android

in embedded
SySTemS

written by benjamin Zores

Linux has continuously grown in the embedded
systems market for over a decade, gaining
market share from proprietary operating
systems. The proliferation of embedded devices,
the explosion of open source development,
the inherent hardware support, the incredible
networking capabilities and the royalty-free
economic model have all helped propel use of the Linux kernel
into one of the best choices for the design of new embedded
systems.

While the success of Linux in the embedded market can not
be denied, its notoriety was once confined to mostly technical
professionals. That changed in 2008 with Google’s release of
the Android mobile phone operating system, based on the
Linux kernel. Thus began the tremendous growth of Linux in the
consumer world, with over one million Android devices being
activated every day in 2012 and predictions of total Android
devices shipped reaching one billion in 2013.

The GroWTh of Android
in embedded SySTemS

1

oVerVieW

http://www.zdnet.com/android-cumulative-shipments-to-hit-1-billion-mark-in-2013-7000004074/
http://www.zdnet.com/android-cumulative-shipments-to-hit-1-billion-mark-in-2013-7000004074/

The Android operating System
Android’s success was no accident and was the result of a long-term strategy and loads of
investment from Google. The early development of the OS came from within Android Inc.
in the early 2000’s; it was purchased by Google in 2005. The original system relied on a
Java framework for its application layer and was not based on the Linux kernel. Only after
several years of development at Google labs, and after an architecture revamping, the first
Android-based smart-phone (the HTC G1) was released and based on the very first version
of the Android software development kit (SDK).

Originally designed only for mobile phones usage, the system has evolved into a variety
of new markets, naturally spreading to tablets, set-top-boxes, video game consoles,
connected TVs, military communication devices, medical devices and soon to be PCs.
Though most consumers are unaware of the underlying presence of the Linux kernel
powering their devices, Android has become a household name and it’s heavy usage
is well known; Android’s mobile device marketshare is close to 75% at the time of this
writing.

Many device manufacturers are now considering a move to Android as a replacement for
proprietary systems from the past such as VxWorks or QNX. In a recent survey by UBM,
34% of embedded engineers reported that they are considering using Android in 2013. For
apps-based devices, the Android OS can sound appealing to manufacturers (due to the
more than 700,000 applications available in the Google Play store) who would rather not
invest in software development, and instead shift their focus to other areas, and potentially
decreasing their time-to-market.

Android’s native multimedia capabilities also come as a free gift for multimedia-oriented
consumer equipment manufacturers. Whether it is for domestic use of set-top boxes
(STBs) or for in-vehicle infotainment (IVI) solutions, interest in being powered by Android
is rising. Even some high-end residential boiler manufacturers now are proposing Android
remote control applications for home automation purpose. The Android operating system
is moving ahead quickly and supporting more and more features at each release.

However, what makes life easier for developers through Google’s SDK, can present a
burden for device manufacturers, who barely manage to follow the release cycle and often
have to skip some versions. As pointed out by the figure [1], Android has seen 17 releases
in just four years.

The GroWTh of Android
in embedded SySTemS

2

The GroWTh of Android in
embedded Systems

in a recent
survey, 34%
of embedded
engineers are
considering
using Android
in 2013.

https://www.linux.com/news/embedded-mobile/mobile-linux/672837-android-follows-linux-into-wide-world-of-embedded

Figure [1]: Android’s releases and API level of compatibility.

The GroWTh of Android
in embedded SySTemS

3

nAme VerSion SdK releASe dATe Kernel VerSion SdK APi ndK APi

n.A. 1.0 September 2008 2.6.25 1 n/A

Petit four 1.1 february 2009 2.6.25 2 n/A

Cupcake 1.5 April 2009 2.6.27 3 1

donut 1.6 September 2009 2.6.27 4 2

eclair

2.0 october 2009 2.6.29 5 2

2.0.1 december 2009 2.6.29 6 2

2.1 January 2010 2.6.29 7 3

froyo 2.2 may 2010 2.6.32 8 4

Gingerbread
2.3 - 2.3.2 november 2010 2.6.35 9 5

2.3.3 - 2.3.7 february 2011 2.6.35 10 5

honeycomb

3.0 february 2011 2.6.36 11 6

3.1.x may 2011 2.6.36 12 6

3.2.x June 2011 2.6.36 13 6

ice Cream
Sandwich

4.0 - 4.0.2 october 2011 3.0.1 14 7

4.0.3 - 4.0.4 december 2011 3.0.1 15 7

Jelly bean
4.1.1 - 4.1.2 June 2012 3.0.31 16 8

4.2 november 2012 3.0.31 17 8

The GroWTh of Android in
embedded Systems

life without GnU
Android is based on the Linux kernel and takes full advantage of the benefits of its
incredible hardware support capabilities. However, there ends the resemblance with any
other embedded (or even desktop) Linux distribution.

It is important to understand the Android model. Google develops the system and it
remains free of charge. While the source is freely available, the development is not done in
the same kind of community-way as it is with the Linux kernel.

The Android development procedure is often referred to as “clopen” (i.e. closed-open),
as the drop of the source depends on Google’s willingness to share (the Honeycomb
release sources never were made public for instance) and comes only after the new
version has been announced and advertised. For good or for bad reasons (depending on
which side you’re on), Google got rid of (L)GPL licensing wherever possible in favor of
Apache/BSD/MIT licenses. Except for the Linux kernel itself, most (if not all) of the 150+
external Free and Open Source Software (FOSS) parts of Android have a non-GPL license.
Unfortunately, the GPL has always been the source of many fears within the industry;
Android comes as a safe solution where anyone can build a custom version without fear of
further legal complications.

For legal, performance and/or convenience reasons, Android’s software architecture differs
heavily from traditional embedded Linux distributions. Google has hacked over (or even
re-designed) some of the fundamentals in order to fit the appropriate execution context.
The Linux kernel itself has been modified to incorporate several “Androidisms.” Google
has introduced multiple aggressive power-management features such as Wake Locks
and Early Suspend, features which were not popular with mainstream kernel developers
and caused extensive debate in the kernel community. One should note that most
modern Linux distributions are desktop- or server-centric; unfortunately embedded Linux
distributions used by devices consequently derive from that framework.

Targeting mobile (i.e. battery-powered) devices, Android’s power-management policy is
designed to minimize power consumption. Thus, the kernel has been configured to go
to sleep as soon as possible and applications that need to run must explicitly force the
system to stay awake. This is a radically different mode than that used by regular desktop
distributions, which historically have tended to mostly follow an “always-on” usage. A few
other drastic changes such as the Binder IPC message bus driver, alarm, timed General
Purpose Input/Outputs (GPIOs) and paranoid network security features have long been
the source of struggle within the mainstream kernel community, but some conciliation and
incorporation of features has been done with Linux 3.3, 3.4 and 3.5 kernels.

Android also differs from GNU/Linux by its userspace. The Bionic C library has been
designed from scratch, breaking any sort of compatibility with either Glibc or uClibc, and
preventing any pre-compiled Linux application from running on Android. The interface layer
with hardware and kernel drivers also has been extended by a hardware abstraction layer
(HAL), allowing manufacturers to write proprietary closed-source userspace drivers with
their hardware, once again probably for legal considerations and to induce wider adoption.

As one can gather from figure 2, the low-level layers have also been stripped out from
GNU/Linux. The BusyBox project has been deprecated by Toolbox, the Xorg/Wayland
window and composition servers have been replaced by a brand-new SurfaceFlinger,
PulseAudio framework’s equivalent is now called AudioFlinger, and GStreamer multimedia
framework has been re-invented through StageFright. Needless-to-say, under these

The GroWTh of Android
in embedded SySTemS

4

The GroWTh of Android in
embedded Systems

Android
comes as a
safe solution
where anyone
can build a
custom version
without fear of
further legal
complications.

conditions, one has no chance to even try to run a typical DirectFB / GTK / Qt / Enlightenment application as-is.

Last but not least comes the Dalvik VM project. The whole Android application, system and services framework are written in
Java. While increasing application portability, Java is not the preferred language of choice of traditional embedded developers.
Android, however, is not based on any Java Virtual Machine (JVM). Code is Java, but then compiled and post-processed to
generate Dalvik byte-code instead of Java byte-code, as to confer security and performances enhancements to the system.
This also led to long-term lawsuit between Oracle and Google regarding property of free use of Java in Android, which finally
settled down, as APIs can’t be protected by copyright. The whole system framework (along with 2000+ classes) is then loaded
only once in memory through Zygote, the mother of all applications. Each new instance then comes as a fork of Zygote memory
space (with copy-on-write methods) allowing applications to load quickly while minimizing their memory consumption.

The GroWTh of Android
in embedded SySTemS

5

Figure [2]: Android’s software architecture.

The GroWTh of Android in
embedded Systems

home Contacts Phone mediaPlayerbrowser

Activity
Service

window
Service

Vibrator
Service

battery
Service

wifi
Service

Packages
Service

Telephony
Service

resource
manager

notification
Service

location
Service

Applications (Java)

Application Services (Java)

native layer (C / C++ / Java)

linux Kernel

Surface
flinger

Audio
flinger

Stagefright Java APiwebkit

openAl openmAX openSSl dalvik VmSQlite

hardware Abstraction layer (hAl): libhardware

binder iPC

Activity
Service

openGl|eS

C library (bionic)

Audio, Video, network, io drivers ... logger
Power management

(wakelocks)

dealing with embedded linux operating Systems
As may happen with any open source software project, Android has been forked by
various groups. Any device manufacturer using Android, however, will pick it up directly
from Google (perhaps with some hardware support patches extending the base). There is
only one Android and Google is actively developing it. There’s no need to look elsewhere if
your goal is to be compatible with Android.

When it comes to embedded Linux however, the available customizations can come in
handy. However, the wide diversity of embedded Linux distribution providers (Windriver,
Montavista, Mentor Graphics, etc.) and the amount of DIY open source embedded
frameworks (the Yocto Project, OpenEmbedded, Buildroot, LTIB, OpenBricks) and the
other SoC manufacturer specific board support packages (BSPs), can make it difficult to
know where to start. The strength of being able to select and tune your packages in order
to build a perfectly customized distribution can quickly become a nightmare when you
have to maintain it and potentially evolve to newer versions. Sure it allows your engineers
to cook their own distribution, but companies are investing R&D resources into building
and maintaining a system instead of focusing on features and added-value. Android can
solve this dilemma by leaving you far fewer choices. Things are the way Google believes
they should be, and either you are fine with it, or you go your own way.

Mass advertising has introduced the concept of apps over the past few years. While the
idea of applications might seem like a compelling reason to consider using Android, it’s not
hard to understand that many devices will not get any value from an apps-ecosystem. For
devices that are expected to perform very specific functions the way the developer wants
them to, embedded Linux distributions built from the Yocto Project are a much better
choice.

reasons for Android’s Attraction
Android’s success is not a matter of good luck. Its massive adoption by industry is due to
several reasons:

•	 Rich	Application	Framework. Modern GNU/Linux systems offer you complete
freedom. One can pick what one likes and use it and modify it at will to perfectly suit
one’s needs. Forks are common and developers tend to do things their own way,
following personal philosophies and beliefs. When it comes to building your own
system, one often has many available software bricks, yet none that can be plugged
into another as is. One can often miss the big end-to-end picture.

Android comes with a stable long-term API, provided through an excellent SDK, which
brings a somewhat standardized ecosystem and framework to third-party partners,
who are able to deal with every part of the system. While the OS is in constant
evolution, the API stability across releases mostly remains preserved, allowing you to
invest long-term. Designing and building applications and packaging them once for
multiple targets allows companies to drastically save costs and efforts.

•	 Aggressive	Time-to-Market.	Designing devices with Android can significantly reduce
time-to-market. Grab the sources, adapt them to your particular piece of hardware
and sell it. If you follow reference designs and reference device usages, releasing a
new device should be possible in only a matter of months. However, as those who
have used Android can tell you, it’s far from being that easy and your team should
gain some Android-specific expertise and knowledge of the OS internals. While
bringing life to your Android device can be faster than what traditional embedded

The GroWTh of Android
in embedded SySTemS

6

The GroWTh of Android in
embedded Systems

for devices that

are expected to

perform very

specific functions,

embedded Linux

distributions

built from the

yocto Project are

a much better

choice.

Designing and

building applications

with Android and

packaging them

once for multiple

targets allows

companies to

drastically save costs

and efforts.

Linux distributions can offer, following the system’s evolutions and maintaining your
code in the long run is yet another story.

•	 Focus	on	“What	Really	Matters.” By bringing the practical framework to the
table, Android allows embedded developers to actually focus on areas that will add
commercial value. Board bring-up can be time-consuming enough and one wants to
avoid wasting more time on re-inventing yet another embedded distribution on top of
it.

•	 Open	Source. Though not developed in a community-way, Android remains 100%
tunable and provides companies a feeling of safety regarding potential legal threats
and licensing.

Under-the-hood Culprits
While Android has grown to an impressive level of maturity, the OS still has a few demons
to cope with, some of them being inherent to its architectural design.

•	 Standardization	and	Economy.	With its massive adoption in the consumer market,
Android has become an important standard. The System on Chip (SoC) development
costs have grown to such a level of complexity and difficulty of integration that
hardware manufacturers can only invest in volume-driven applications and customers.

Multiple vendors now feature embedded Linux BSP only as an internal sandbox for
board bring-up, while delivering Android BSP to their final customers. After all, who
would invest in embedded Linux BSP targeting 5% of customers while 95% want
Android only? When embedded Linux market shares have decreased, it’s been
mostly due to vendors not investing as much as they once did. Android’s hardware
abstraction layer also triggers some limitations inherent to its possibly proprietary
licensing. SoC vendors provide their customers the binary HAL blobs meant for
a given Android release and platform API. Device manufacturers then depend on
their partners’ willingness to update and maintain their user-space drivers for each
Android version, preventing any further device upgrades and maintenance that is
possible otherwise. This is especially true for old, long-running SoCs that could benefit
technically from a new Android release, but where no one is willing to invest the work,
leaving the end user with no choice but to upgrade to the next generation device.

•	 Design	Flaws.	For licensing and convenience reasons, Google has chosen not to re-
use some long developed open source software, leading to some hard-to-fix issues.
One consequence is Android not being real-time capable. Its kernel is often tuned for
1000 Hz low-latency but that is the best one can do. Forget about the PREEMPT_RT
patch-set (with proprietary user-space drivers, it would be hard to get anyway) and
say hello to the Dalvik virtual machine and its garbage collector.

While Java application developers are accustomed to not caring about memory
management, someone still has to do the job. The Dalvik GC is automatically triggered
within application runtime, pausing execution context. Add to the checklist a terrible
and slow audio architecture (audio packets come from bottom ALSA up to Java
framework through multiple HAL and JNI indirection layers) that prevents any real-time
professional audio application to run efficiently.

Android’s multimedia layer isn’t in better shape. While it appears to do the job
well enough, it is ages away from the Linux industry standards (GStreamer and/
or FFmpeg), in terms of performance, architecture, audio/video codecs support and

The GroWTh of Android
in embedded SySTemS

7

The GroWTh of Android in
embedded Systems

Google has
chosen not to
reuse some
long developed
open source
software,
leading to some
hard-to-fix
issues.

portability among devices. It is unfortunately not so uncommon for native applications
to actually try to guess the hardware they’re running on and dlopen() / dlsym() some
functions to perform hardware-accelerated operations that are not directly available
through StageFright’s framework.

Last but not least, Android has deliberately hobbled one of Linux’s key assets when
developing the networking and connectivity layer. The OS is unable to handle more
than one network connection at a time, more than one device driver at a time (per
connection type), and unable to handle more than one interface per connection type.
Sure, it didn’t make much sense in a mobile phone world, but now that Android has
spread to markets and places where it was not originally expected to be, problems
emerge. From a device manufacturer standpoint, adding simple things like Bluetooth
and WiFi, or even basic Ethernet support, is a massive pain compared to what it would
take with a more classic embedded Linux distribution. Add on top of that the absence
of real routing and access point capabilities, and you’ll understand that networking
capabilities are quite limited.

•	 A	trade-off	between	performance	and	portability.	As appealing as the Java “write
once, run everywhere” framework’s philosophy might be, it is also quickly limiting.
Any serious performance-critical or multimedia application actually has to be built
upon native C/C++ code (sometimes even platform-specific) through Google’s NDK,
cutting down portability.

•	 The	limits	of	“embedded.” To some extent, Android was originally designed for
low-power and low-resource devices. The Dalvik VM has been designed to minimize
memory use and application footprint, which are precious in embedded devices.
Since 2010, newly developed SoC’s have come with fantastic performances features.

At the time of this writing, high-end devices have 4-core Cortex-A9 CPU (with
Cortex-A15 just around the corner), 32GB eMMC as storage and up to 2 GB RAM.
While becoming more and more powerful, these devices are still a far cry from your
current PC, though perfectly manageable for perform your typical daily tasks (i.e.
browsing, chatting, email, games, etc.). With Android 4.0 Ice Cream Sandwich, it has
become challenging to run without a minimum 512MB memory and an OpenGL|ES
capable GPU.

So, where to put the desktop/embedded frontier? Can we still call such devices
“embedded”? How would today’s Android releases behave on an old ARM9 or ARM11
device? What if Android has raised hardware requirements just a bit too high?

Conclusion
The growth of Android in embedded usage is not a trend that is up for debate. It has
brought the Linux kernel to an incredible number of devices. Today, device manufacturers
want to support Android, even if it is just to follow the trend and make sure they are not left
behind.

Paradoxically, in some ways, Android somehow has slowed down innovation. Likewise,
products all evolve in the same [Google] way, regardless of the manufacturer, with the
exception of some necessary custom user-interface rework. It has become more and more
difficult to differentiate one device from another, except from the quality of its hardware
peripherals. Many consumer-oriented markets (phones, tablets, in-vehicle infotainment) are
trending toward multimedia, connected and applications-based devices (where, for some
obscure reasons, every big player nowadays wants an application store to monetize its’

The GroWTh of Android
in embedded SySTemS

8

The GroWTh of Android in
embedded Systems

for many,
embedded
Linux still
remains the
operating
system of
choice but
the growth of
Android can
not be denied.

services), and Android clearly can be a winning solution for these needs.

So, will Android be the holy answer to all our needs?

For many, embedded Linux still remains the operating system of choice, especially in areas
such as headless product design. While remaining possible, hacking Android to run on
headless devices such as routers, probes and sensors, servers and network access points,
is nothing but a painful path that only a few brave souls are willing to take. Embedded
systems developers also got familiarized with Linux over the last decade and have grown
in expertise. Android is a brave new world that requires specialized knowledge.

Alternatively, any product design based around an LCD screen with a touch-capable
display, and intending to be apps-driven, should seriously consider Android, even if the
product is not a smart-phone. The existing ecosystem, along with the framework’s off-
the-shelf capabilities, provides developers all the necessary tools at hand to build great
products.

Android actually has brought to the market what GNU/Linux misses the most: one
single framework that allows application developers to deal with every single part of the
system (DirectFB, GTK, Qt, EFL and friends are pretty good toolkits but none of them
is as complete as Android’s framework). Keep in mind, however, that Android lacks in
performance and tuning what traditional embedded Linux does in end-user application
design capabilities. As painful as it is to say, today’s hardware has become powerful
enough to mask Android’s performance issues.

So should you go the Android way? The answer is a trade-off to be made by each
manufacturer among the orientation of his product and the skills of his teams. If you
already have switched to embedded Linux in the past and raised your team to a level of
expertise where your code is mature and based on strong software bricks, I’d advise you
to keep on this track because Android would require a fresh start. If you’re a newcomer,
however, (or an old proprietary systems’ user) and you missed the last decade’s
embedded Linux emergence, or if your end product is open and meant to be able to
support third-party partners extensions and applications, just listen to nature’s call and go
with this new industry standard.

In either case, Android is definitely not replacing embedded Linux in the industry, but
instead pushing the Linux kernel in some new directions and markets that once were
driven by proprietary operating systems. Each track has its pros and cons and while going
with Android sounds appealing (and it is!), this kind of decision has to be made wisely, as
Android and embedded Linux follow different paths that are not likely to reconnect.

About the Author
As a software architect for Alcatel-Lucent, Benjamin Zores has been designing embedded
Linux devices for 10+ years, leading enterprise-grade Linux/Android multimedia IP phones
conception. His area of expertise mostly covers low-level devices and platforms definition,
board bring-up and drivers development, though his real passion comes from reverse-
engineering the software architecture of operating systems to understand what’s beneath
the hood. He drove the conception of an Android- based wired IP phone and has a very
deep knowledge of bringing support for all multimedia peripherals and connectivity layers
of Android. Prior from that, Ben was also most known for his open source contributions,
as the original author of the OpenBricks embedded cross-build framework, the GeeXboX
HTPC live distribution and the uShare UPnP/DLNA MediaServer. Ben is also a recurrent
speaker at LinuxFoundation’s ELC and ABS events and Android technical writer for Linux
Magazine France. He lives in Strasbourg, France.

The GroWTh of Android
in embedded SySTemS

9

The GroWTh of Android in
embedded Systems

Android is
not replacing
embedded
Linux, but
instead pushing
the Linux
kernel in new
directions and
markets that
once were
driven by
proprietary
operating
system.

Android Training Courses

The Linux Foundation offers several Android development training courses for companies
and individuals to quickly get up-to-speed on the Android platform and on writing apps for
Android devices:

•	 Introduction to Embedded Android Development (LF308)

•	 Introduction to Android (LF329)

•	 Inside Android: An Intro to Android Internals (LF315)

•	 Android Bootcamp (LF295)

To learn more about our Android training, visit:

http://go.linuxfoundation.org/android-courses

distribution-flexible

The Linux Foundation’s courses are built to be distribution-flexible, allowing companies
or students to easily use any of the big three distribution families: Debian, Fedora or
OpenSUSE. If your company runs one of these Linux distributions and needs an instructor
who can speak deeply on it, we have a Linux expert who knows your distribution well
and is comfortable using it as the basis for any corporate Linux training. For our open
enrollment students who take our online training or classroom training, our goal is to help
them, first and foremost, to become Linux professionals, rather than focusing on how to
use one particular set of tools.

Technically-Advanced

The Linux Foundation’s training program has a clear advantage. As the company that
employs Linux founder Linus Torvalds, we are fortunate in our ability to leverage close
relationships with many of the top members of the Linux community, including Linux kernel
maintainers. This led to the most comprehensive Linux training on the market, delivered
through rigorous five-day courses taught by Linux experts who bring their real world
experiences to every class.

Since Linux is always evolving, our course materials are regularly refreshed and up-to-date
with stable versions of the Linux kernel. We deliver our advanced Linux training in a 50/50
training format, where 50 percent of a student’s time is spent learning from an instructor
and the other 50 percent doing exercises in hands-on learning labs.

For more information about our Linux training, please visit training.linuxfoundation.org
and contact us today.

The GroWTh of Android
in embedded SySTemS

10

Why TrAin wiTh The
linUX foUndATion

We needed
someone who
could fully
engage with
Ph.D.-level
developers. We
had no doubt
that we’d found
the right
instructors.
Dana Krokosky, Compunetix

The willingness
of the Linux
Foundation
 to customize
 the course to
 our needs was
 the biggest
determining
factor for
choosing them.
Matthew Cheng, Broadcom

The Linux
Foundation really
had the best
credibility out
there, and they
were flexible
and tailored the
class to what I
needed for my
developers.
Paul Beer, Optelian

